3.73 \(\int \frac {\cos ^2(c+d x) (A+C \cos ^2(c+d x))}{(b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=80 \[ \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b^3 d} \]

[Out]

2/5*C*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/b^3/d+2/5*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli
pticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b^2/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {16, 3014, 2640, 2639} \[ \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b^3 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(5*A + 3*C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*b^2*d*Sqrt[Cos[c + d*x]]) + (2*C*(b*Cos[c +
d*x])^(3/2)*Sin[c + d*x])/(5*b^3*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 3014

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[
e + f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e + f*
x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx &=\frac {\int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx}{b^2}\\ &=\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^3 d}+\frac {(5 A+3 C) \int \sqrt {b \cos (c+d x)} \, dx}{5 b^2}\\ &=\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^3 d}+\frac {\left ((5 A+3 C) \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b^2 \sqrt {\cos (c+d x)}}\\ &=\frac {2 (5 A+3 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^2 d \sqrt {\cos (c+d x)}}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 69, normalized size = 0.86 \[ \frac {2 (5 A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+C \sin (2 (c+d x)) \cos (c+d x)}{5 b d \sqrt {b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(5*A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + C*Cos[c + d*x]*Sin[2*(c + d*x)])/(5*b*d*Sqrt[b*C
os[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right )}}{b^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))/b^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 1.55, size = 263, normalized size = 3.29 \[ \frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (8 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{5 b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x)

[Out]

2/5*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b*(8*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-8
*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))+2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/
2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^2\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^2*(A + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________